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Dynamics of some neural network models with delay
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The dynamics of the neuronic model described by the one-dimensional delay functional differential equation
are studied in this paper. We give a strict and detailed analysis of dynamical characteristic of this model by the
Lyapunov functional approach and Hopf bifurcation proposition. Furthermore, numerical simulations, as well
as Lyapunov exponents, are presented to support our conjectures about the appearance of complex dynamics
such as chaos. We also investigate the dynamics of the neural network model described by then-dimensional
delay functional differential equation with a symmetrical weight matrix, and corresponding simulation results
are included as concrete examples.
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I. INTRODUCTION

Various research on the dynamics of neural network s
tems has been creating great interest for more than 30 y
In the last ten years, many researchers have focused o
study of the dynamics of neural network models with del
In fact, neural networks often have time delay. An exam
of neural network delay is the delay due to the finite switc
ing speed of amplifiers in electronic neural networks. R
search on these delay phenomena has been vast and th
sults are consistent. Marcus and Westervelt@1# incorporated
a single time delay into the connection of terms of Hopfiel
model and observed sustained oscillations resulting from
time delay. Further investigation on dynamics of such m
els can be found in Refs.@2–8# and references therein; how
ever, their primary concern is the equilibrium and stability
these neural network systems given specific parame
Meanwhile, other researchers, such as Pakdamanet al. @9#
and Brunel and Hakim@10#, devoted their research to thes
oscillations, which are ubiquitous in neural networks. In t
paper, we study both stable dynamics and oscillations, e
chaos, in the given neural network model with delay.

In 1997, Pakdaman,et al. @2,9# considered the following
one-dimensional system,

dx~ t !

dt
52x~ t !1A tanh@x~ t2t!#, ~1!

and its solution is defined over the infinite-dimensional ph
spaceS5C@2t,0# of continuous functions on the interva
@2t,0#. They concluded that for certain parameters,
equation has a stable convergent solution or an oscilla
periodic solution, but no chaotic dynamics.

Furthermore, one of the mathematical models, origina
proposed by Caianiello and Lucas@11# 30 years ago, consist
of a set of neuronic and mnemonic equations. K. Gopalsa
and I. K. C. Leung~1997! @3# investigated the dynamica
characteristics of a firing neuron, adjusted using the diff
ence of its current status and the weighted average o
firing history. After appropriate transformations, the ne
ronic equation changes into the following delay different
equation:
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dx~ t !

dt
52x~ t !1A tanh@x~ t !#1B tanh@x~ t2t!#. ~2!

Obviously, the neuron exerts instantaneous self-excita
with the parameterA.0 and delayed self-inhibition with
B,0. Therefore, the signs of the parametersA andB deter-
mine the self-characteristic of a neuron with threshold effe
It is reported in Ref.@4# that with the parametersA.0,
B,0 ~that is, the neuron is self-excited and its delayed eff
is self-inhibitory!, the system has global asymptotic stabili
independent of the delayt whenA andB are in the triangle
determined by three linesA50, B50, andA2B51 in the
A2B parameter plane.

Since studying the dynamics~not only the stable but the
oscillating characteristic as well! of Eq. ~2! is essential for
understanding the behavior of larger neural networks in
presence of delays, parameters in other regions were ex
ined by Pakdaman and Malta~1998! and the corresponding
results@4# are as follows.

When A1B<1, the origin is the single equilibrium o
Eq. ~2!, while whenA1B.1, Eq. ~2! has three equilibria,
which arex15a, x250, andx352a, wherea is the unique
strictly positive real number that satisfiesa5(A
1B)tanh(a).

~1! If A1B,1 and A2B,1 ~region Ia!, the origin is
globally asymptotically stable for allt>0.

~2! If A1B,1 andA2B.1 ~region Ib!, the origin loses
its stability through a Hopf bifurcation at

tc5cos21
„~12A!/B…/AB22~12A!2

with the delay being increased. For delays larger thantc ,
undamped oscillations appear.

~3! If A1B.1, B.0 ~IIa!, x15a andx352a are locally
asymptotically stable, whilex2 is unstable. For small delay
t, Eq. ~2! is convergent in region IIa as the boundary sep
rating the two basins is exactly the stable manifold of t
origin and as the delay is increased, the origin underg
successive Hopf bifurcation leading to the generation of
riodic orbits.

~4! If A1B.1, andB,0 ~IIb!, the instability is similar
to that in region Ib. For large delays, most solutions disp
asymptotically periodic oscillations.
©2001 The American Physical Society06-1
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In the following section, we give a thorough and comp
hensive investigation about a one-dimension delay differ
tial equation and establish a good foundation for the num
cal simulation; we strictly present proofs about t
theoretical results by a Lyapunov functional approach a
Hopf bifurcation proposition with our own technique. The
mathematical proofs conversely suggest our conjecture a
the appearance of the complex dynamics such as chao
order to make our result more complete, numerical simu
tions and Lyapunov exponent calculations are given. In
last section, we analyze the dynamics in a specified clas
higher-dimensional neural network systems.

II. DYNAMICS OF THE NEURONIC MODEL DESCRIBED
IN A ONE-DIMENSIONAL DELAY FUNCTIONAL

DIFFERENTIAL EQUATION

In this section, we give a theoretical analysis of the d
namics of the neuronic model with the parametersA andB in
different regions Ia, Ib, IIa, and IIb. The different parame
sets are relevant to self-excitation or self-inhibition of t
feedback of a neuron and its threshold effect. In order
present our results, we should first introduce some b
theory of a functional differential equation. Consider the a
tonomous equation

dx~ t !

dt
5 f ~xt!,

where f :C→R(C5C@2t,0#) is completely continuous an
solutions of this equation depend continuously upon the
tial data. We denote byx(f) the solution through (0,f). As
we have finished defining the solution of the above equat
the asymptotic stability criterion and some useful facts c
be presented as follows.

Fact 1@12#:
~1! SupposeV:C→R is continuous,V(0)50, and there

exist non-negative functionsm(r ) andv(r ) such that when
r→`, m(r )→`, and m(uf(0)u)<V(f), V̇(f)<
2v(uf(0)u). Then the zero solution of equationdx(t)/dt
5 f (xt) is stable and every solution is bounded. Ifv(r ) is
positive definite, then every solution tends toward zero
t→`.

~2! SupposeV is continuous onḠ ~the closure ofG), V̇
<0 onG, andxt(f) is a bounded solution of Eq.~2!, which
remains inG. Thenxt(f)→M ast→`. HereM denotes the
largest invariant set inS5$fufPḠ,V̇(f)50% with respect
to Eq. ~2!.

Fact 2@12#: If Eq. ~2! satisfies the following conditions
then Eq.~2! has a nonconstant period solution 2p/v0.

~a! The linear equation has a simple purely imagina
characteristic rootl05 iv05” 0 and all characteristic root
l j5” l0 ,l̄0 satisfyl j5” ml0 for any integerm;

~b! Rel8(0)5” 0.
Fact 3@13#: If

ẋ~ t !5ax~ t !1bx~ t2t!1 (
i 1 j >2

ci j ~ t !xi~ t !xj~ t2t! ~3!
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satisfies the following conditions, then for anyt.0, the zero
solution is unstable. Hereuci j (t)u<ci j .

~i! a1b.0;
~ii ! there exists«.0, so that ( i 1 j >2ci j uxi uuyj u,1`

when uxu,«,uyu,«.
Observing the above theory, we may find that Eq.~2! is a

functional differential equation, and we can discuss the
namical characteristic of the origin of Eq.~2! by applying
Fact 1. Consequently, we have the following proposition.

Proposition 1: If the parameters satisfy the inequali
uBu,12A ~Ia!, which means both the value of neuron a
the self-excitation dominate the threshold effect, the zero
lution of Eq.~2! is globally asymptotically stable, that is, th
solution of Eq.~2! damps toward zero ast→`.

Proof: According to the assumption, we haveA1B,1.
This leads to the fact that the origin is a unique equilibriu
If A>0, we take the Lyapunov functional

V~f!5f2~0!1uBu E
2t

0

f2~u!du.

Let m(r )5r 2, and we obtain

V~f!5f2~0!1uBu E
2t

0

f2~u!du>f2~0!5m~ uf~0!u!.

Furthermore, we could find a positive definite functionv(r )
satisfies

V̇uxt<2v~ uf~0!u!.

Therefore, by Fact 1~1!, limt→1` x(t)50 ast→1`. As the
prameterA,0, we will use Fact 1~2! to prove thatx(t) tends
to the largest invariant setM5$0% as t→1`. These imply
that the equilibrium of the neural network Eq.~2! is globally
asymptotically stable.~The detailed proof will be given in
the Appendix.!

Second, we will analyze the dynamics with a certain a
nonignored threshold effect, that is, the parameter region
comes Ib in Fig. 1. The following proposition involves Hop
bifurcation in a neural network model based on fact 2.

Proposition 2:When the parameters in region Ib satis
A1B,1, A2B.1 ~which means the system is not on

FIG. 1. A-B plane.
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partially but also certainly determined by the effect of t
self-inhibitory delay!, there exists a critical valuetc of delay
t, such that the zero solution loses its stability by Hopf
furcation attc .

Proof: About Eq.~2!, the corresponding linear equation

dx

dt
5~A21!x~ t !1Bx~ t2t! ~4!

and its characteristic equation isl5A211Be2lt.
If t50, the characteristic equation becomesl5A1B

21. For the assumptionA1B,1, we know that the charac
teristic root has a negative real part att50. Thus, the equi-
librium is asymptotically stable. There must exist a critic
valuetc such that the characteristic root has a negative
ast is continuously increased from zero totc , and the char-
acteristic equation has a purely imaginary root wh
t5tc . To find this valuetc , we use the following method

Letting l5 iv(vÞ0), the characteristic equation turn
into

iv5A211Be2 ivt5~A211B cosvt!2 iB sinvt,

and we have

H A211B cosvt50

v1B sinvt50.

This leads to

v5AB22~A21!2, tc5cos21@12A/B#/AB22~A21!2.

Obviously, this satisfies condition~a! in Fact 2. On the other
hand, derivation on both side of the characteristic equa
l2Be2lt2A1150, with respect tot, leads to

l8~t!1Be2lt~tl8~t!1l!50,

that is,

l8~t!5
2lBe2lt

11Bte2lt
,

and l8(0)52B Rel(0)5” 0. Consequently, condition~b!
holds.

According to Fact 2, we know that the zero solution
Eq. ~2! produces Hopf bifurcation attc to make the equation
have a periodic solution. We can roughly get some proper
of the oscillating period when it loses stability. Equation~3!
will have a solutionx(t)5eivt at (A,B,tc), wherev is the
angle frequency. Therefore, period

T52p/v52p/AB22~A21!252ptc /cos21@12A/B#.

Hence, it is easy to see that 2t<T<4t. Accordingly, the
range of the oscillating period of Eq.~2! is restricted at the
unstable point.

Figures 2 and 3 are illustrations of activations of the n
ron described by Eq.~2! with the parametersA and B in
Region Ib. We take different parameters as follows. The
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tivations of the neuron are shown in Figs. 2 and 3 with t
parametersA5220.0,B5250.0, tc50.0442, andA51.0,
B52100.0, tc50.0157, respectively. Furthermore,L de-
notes the largest Lyapunov exponent, which will be e
plained in the following paragraph. We take the initial co
dition asx(u)5f(u)55.025.0u/t,uP@0,t#.

From the figures shown, we may find that ast,tc , the
origin is asymptotically stable; whilet is close totc , the
orbit becomes periodic; whent.tc , the orbit presents cha
otic characteristics after successive periodic changes.
means that the value of a neuron’s threshold certainly de
mine the dynamics of it and the simulation results coinc
with our theoretical analysis.

Next, we discuss the situation when the parameter
equality A1B.1 holds, that is, in regions IIa and IIb. In
these regions, both the feedback and the delay effect
more dominate than the current status and Eq.~2! has three
equilibriax15a, x250, x352a with the parameter inequal
ity. Applying Fact 3 above, we can easily conclude the f
lowing proposition.~The proof of Proposition 3 is omitted
here as it is trivial.!

Proposition 3:If A1B.1, the zero solution of Eq.~2! is
unstable.

What’s more, we want to investigate the characteristic
equilibria at zero as well. First, expand Eq.~2! at x15a
according to the Taylor formula, and we have

dx

dt
52x~ t !1AH ea2e2a

ea1e2a
1

4

~ea1e2a!2
@x~ t !2a#1•••J

1BH ea2e2a

ea1e2a
1

4

~ea1e2a!2
@x~ t2t!2a#1•••J .

Let z(t)5x(t)2a, and the variational equation of Eq.~2!
converts to

dz

dt
52z~ t !1

4A

~ea1e2a!2
z~ t !1

4B

~ea1e2a!2
z~ t2t!.

Thus, the corresponding characteristic equation is

l5211
4A

~ea1e2a!2
1

4B

~ea1e2a!2
e2lt.

If t50, it leads to

l5211
4A

~ea1e2a!2
1

4B

~ea1e2a!2
.

Let f (a)5e2a2e22a24a, and we have f 8(a)52e2a

12e22a2452(ea2e2a)2.0. For f (a). f (0)50(a.0)
andA1B.1, the inequality 4(A1B)/(ea1e2a)2,1 holds.
Therefore,l,0 ast50. Becausel is continuously depen-
dent ont, it follows that the characteristic root has a neg
tive real part for smallt, which implies the local asymptotic
stability of equilibrium x15a as A1B.1. Specifically, if
B,0, we want to find a critical valuetc8 ast is increased.
6-3
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FIG. 2. Dynamics of a scalar delayed neural network with parametersA5220.0, B5250.0, tc50.0442, and the different threshol
values noted under each picture.L represents the largest Lyapunov exponent.~a! t50.042, ~b! t50.0442, ~c! t50.058, ~d! t50.06,
L50.2853.
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Letting l5 iv, the characteristic equation is

iv5211
4A

~ea1e2a!2
1

4B

~ea1e2a!2
e2 ivt

5211
4A

~ea1e2a!2
1

4B

~ea1e2a!2
~cosvt2 i sinvt!

5211
4A

~ea1e2a!2
1

4B

~ea1e2a!2

3cosvt2 i
4B

~ea1e2a!2
sinvt.

Comparing the imaginary part on both sides, we get

v5A16~B22A2!18A~ea1e2a!2

~ea1e2a!4
21 ,
05190
therefore,

tc85cos21F ~ea1e2a!224A

4B G Y v.

Similarly to the proof of Proposition 2, the equilibriumx1

5a loses its stability by Hopf bifurcation attc8 .
By a minor modification of the above discussion, one c

easily determine the characteristic equilibrium ofx352a. In
short, for A1B.1, x250 is unstable andx15a, x352a
are locally asymptotically stable.

In the following paragraph, we are concerned with ho
the unstable solution of Eq.~2!, that is, the current status o
a neuron, performs; will it evolve stochastically or regular
or tend toward infinity. By Eq.~2!, we know that

Udx~ t !

dt
1x~ t !U5uA tanh@x~ t !#1B tanh@x~ t2t!#u

<uAuutanh@x~ t !#u1uBuutanh@x~ t2t!#u

<uAu1uBu;
6-4



DYNAMICS OF SOME NEURAL NETWORK MODELS WITH DELAY PHYSICAL REVIEW E63 051906
FIG. 3. Regular and complex dynamics of a scalar delayed neural network with parametersA51.0, B52100.0,tc50.0157, and the
different threshold values noted under the pictures.L represents the largest Lyapunov exponent.~a! t50.01, ~b! t50.015,~c! t50.0158,
~d! t50.022,~e! t50.026,~f! t50.028,L50.1322.
051906-5



ameters

JIONG RUAN, LIJUAN LI, AND WEI LIN PHYSICAL REVIEW E 63 051906
FIG. 4. Asymptotic dynamics and stable oscillations of a scalar delayed neural network system with the particular par
A513.5373,B5211.4627, andtc852.009.~a! t51.0, ~b! t52.0095tc8 , ~c! t52.20, ~d! t52.50.
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thus,

2~ uAu1uBu!<
dx~ t !

dt
1x~ t !<uAu1uBu.

Then we get

E
t0

t

2~ uAu1uBu!esds<xet2x0et0<E
t0

t

~ uAu1uBu!esds.

Therefore,

H 2~ uAu1uBu!,x<uAu1uBu1x0et0 ~x0.0!

2~ uAu1uBu!1x0et0<x,uAu1uBu ~x0,0!.

This leads to the following proposition.
Proposition 4:Every solution of Eq.~2! is bounded.
Our paper is based on the above results. What we con

ered is that due to the solutions of Eq.~2! all being bounded,
the dynamics of the solutions will be very complex as t
equilibrium points are unstable. In an ordinary different
equation, a system whose dimension is larger than three
05190
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have chaotic dynamics, however, a one-dimensional de
differential equation corresponds to an infinite dimension
namical system, which means that it is very possible t
such a system’s dynamics will perform chaotically. The
fore, the activation level of a neuron’s performance sho
be complicated or even chaotic. Motivated by these ideas
simulate the numerical integral solution of Eq.~2!. We study
especially the dynamical behavior when delayt changes
near the critical value, and detect the solution trajector
that exhibit prolific dynamics ast is increased gradually.

Figures 4 and 5 are the numerical simulation of the
rametersA, B in region IIb. We takeA513.5373, B5

211.4627, andtc852.009. The initial condition is taken a
x(u)5f(u)55.025.0u2/t2, uP@0,t#.

Figure 4~a! shows that the activations tend to the fixe
point 22. Figures 4~b! and 5 depict the evolution from pe
riod to chaos, and the larger the delayt of a neuron be-
comes, the more obviously the chaotic phenomenon exte
We zoom out to the activations in the time period 200
5000 ~ms! and 3000–4000~ms! from those in Fig. 5~b!,
which can be seen in Figs. 5~c! and 5~d!.
6-6



DYNAMICS OF SOME NEURAL NETWORK MODELS WITH DELAY PHYSICAL REVIEW E63 051906
FIG. 5. Chaotic dynamics of scalar delayed neural network systems with larger thresholdt and parametersA513.5373,
B5211.4627,tc852.009, whereL is the largest Lyapunov exponent.~a! t53.0, L51.2531,~b! t53.90,L51.4618.~c! and ~d! are the
zoomed out pictures from~b! in the time period 2000–5000~ms! and 3000–4000~ms!, respectively.
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Chaotic dynamics are unpredictable because the ev
tional time is of long enough duration to make it impossib
to depict the orbital evolution by using the analytic soluti
of Eq. ~2!. However, we are trying to give an effective th
oretical criterion to ensure the existence of chaos; never
less, it is still in process. Numerical simulation is then oft
used as an auxiliary tool, designed for this, and the rese
on chaos is usually called ‘‘the science of the computer er
We also use the largest Lyapunov exponent@14#. This expo-
nent is widely used in nonlinear science as a measurem
index. It can be found@15# that a positive largest Lyapuno
exponent indicates the appearance of chaos in a bou
system. The following computation simulation results affi
our conjecture.

As A5220.0, B5250.0, and t50.06, the largest
Lyapunov exponent is 0.2853; the largest Lyapunov ex
nent becomes 0.1322 with the parametersA51.0,
B52100.0 and t50.028, while with A513.5373,
B5211.4627, andt52.8, the largest Lyapunov exponent
equal to 1.1794. It is evident that the activations, limited in
bounded region, and split exponentially, show roughly
emergence of chaos.
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In Ref. @4#, the chaos of such a neuron in the neuron
system, described by Eq.~2!, is never mentioned; howeve
we observe the chaotic orbit with the aid of a computer. O
results further strengthen the evidence demonstrating
presence of chaos.

III. DYNAMICS OF THE NEURAL NETWORKS MODEL
DESCRIBED IN A n-DIMENSIONAL DELAY

FUNCTIONAL DIFFERENTIAL EQUATION WITH
SYMMETRICAL WEIGHT MATRIX

In Ref. @1#, Marcus and Westervelt considered the follow
ing equations with delay:

u̇i~ t !52ui~ t !1(
j 51

n

Ji j f ~uj~ t2t!! ~ i 51,2,•••,n!.

~5!

The model is originally from the Hopfield system, and whe
Ji j represents the connected weight between thei th neuron
and the j th neuron, and the second term on the right-ha
6-7
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side of Eq.~5! represents the feedback from all neurons
the i th neuron itself. However, Marcus and Westervelt a
time delay to the connection of terms of this system such
it becomes more realistic for the real neural networks. Eq
tion ~5!’s linear equations are

u̇i~ t !52ui~ t !1(
j 51

n

bJi j uj~ t2t!, ~6!

whereb is the derivative off (u) at 0.
SupposeJi j is symmetrical, and that it can be transform

into a diagonal matrix. Therefore, the aboven-dimensional
equations will turn into the followingn one-dimensional
equations:

ẋi~ t !52xi~ t !1bl ixi~ t2t!, ~7!

wherel i( i 51,2, . . . ,n) is the eigenvalue ofJi j .
We considered the following equation, similar to Eq.~5!:

u̇i~ t !5Riui~ t !1(
j 51

n

Wi j f @uj~ t2t!#, ~ i 51,2, . . . ,n!,

~8!

where Ri,0 represents the resistance of each neuron,
Wi j represents the connected weight between thei th neuron
and thej th neuron. However, Eq.~5! is a special form from
Eq. ~8!. Equation~8!’s linear equations turn out to be

u̇i~ t !5Riui~ t !1(
j 51

n

f 8~0!Wi j uj~ t2t!, ~ i 51,2, . . . ,n!.

~9!

In the following paragraph, we show some results in
n-dimensional system, which is analogous to that of the s
lar neuron system. For convenience of discussion, we
f (u)5tanh(u), which is a popular function in a neural ne
work system, andb51. By the direct use of some facts i
Appendix B, we have the following results.~We omit the
proof here to avoid repetition.!

Proposition 5.
~1! If all eigenvaluesl i of weight matrixW satisfy ul i u

,uRi u ( i 51,2, . . . ,n) ~which means the delay effect is no
dominate in the evolution of a neural network system!, then
the zero solution of Eq.~9! is asymptotically stable, indepen
dent of the time delayt.

~2! The equation corresponding toxi satisfyingl i52Ri
has the property that its zero solution is stable for any ti
delayt.

~3! If all eigenvaluesl i,2Ri ( i 51,2, . . . ,n), and there
exists at least onel j ( j P$1,2, . . . ,n%) satisfyingl j,Rj ,
and then there exists atc.0 such that astP(0,tc), the zero
solution of Eq.~9! is asymptotically stable; ast.tc , the
stability is lost. Here,

tc5min
j

1

Al j
22Rj

2
cos21S Rj

Al j
22Rj

2D
~l j,Rj , j P$1,2, . . . ,n%!.
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Note: WhentP(0,tc), the zero solution of Eq.~9! is
asymptotically stable. Whent5tc , because several compo
nents satisfyingl j,Rj produce Hoof bifurcation, the whole
system tends to a periodic solution while the other com
nents tend to zero; whent.tc , the components satisfying
l j,Rj have complex chaotic dynamics after success
Hoof bifurcation, thus the totaln-dimension system is cha
otic as long as there is one chaotic component. In short,
threshold value is the key to the different dynamics when
delayed self-inhibition is considerably large, that is,l i
,Ri .

Proposition 6. If there exists at least onel i ( i
P$1,2, . . . ,n%) satisfyingl i.2Ri , then the zero solution
of Eq. ~9! is unstable for anyt.0.

Remark.By this proposition, once there is one chao
component of a neural network system, then-dimensional
system should be chaotic. As a result, it can be seen tha
long as there is at least onel i.2Ri , then for anyt.0, it
will be possible to make then-dimensional system chaoti
owing to the chaotic dynamics of certain components. Co
paratively, requiring allul i u,uRi u to make the zero solution
asymptotically stable is obviously strictly limited; howeve
complex behavior such as chaos is relatively easy to dem
strate.

Numerical simulation results

Now, by applying the above theory, we take a special c
that is a two-dimensional system as

R15221, R251, W115250, W2252100,

W125W2150, @Figs. 6~a!– 6~b!#

R15221, R2523, W115250, W22524,

W125W2150, @Fig. 6~c!#.

Thus, we have the following numerical simulation results
Figure 6~a! shows the phase space of componentsu1 and

u2 with the time delayt50.01 @tc5min(0.0452,0.0157)
50.0157#. They show the convergence of two compone
to zero, which means that the status of the two neuron
asymptotically stable.

Figure 6~b! shows the evolutions of componentsu1 and
u2, respectively, as the time delayt50.06. We can see tha
the orbits perform chaotically. And the corresponding orb
in phase space are also shown in the third picture of F
6~b!. We also get a limit cycle, shown in Fig. 6~c!, of the
neural networks’ activations as the parameters are take
the above explanation; therefore, the status of the two n
rons tends toward regular oscillation with time.

IV. CONCLUSION

All of the obtained criteria and propositions are strict
proved by the Lyapunov functional approach and Hopf B
furcation. These results are reinforced by the computer si
lations. The conjecture of the existence of the chaos in ne
network system is analyzed in detail above. These fac
might play an important role in the design of neural n
6-8
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FIG. 6. Dynamics of two-dimensional neural networks withR15221, R251, W115250, W2252100, W125W2150, @~a!, ~b!# and
R15221, R2523, W115250, W22524, W125W2150. ~a! t50.01, ~b! t50.06, ~c! t54.0.
051906-9
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works. However, the theoretical proofs about the existenc
chaos in neural network models with delay, considering
stochasticity of real neural networks, will be given in futu
studies.
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APPENDIX A

The details of proof Proposition 1 are given as follow
We take

V~f!5f2~0!1uBu E
2t

0

f2~u!du.

Hence,

V̇uxt
52x~ t !ẋ~ t !1uBux22uBux2~ t2t!

522x2~ t !12Ax~ t !tanh@x~ t !#12Bx~ t !tanh@x~ t2t!#

1uBux2~ t !2uBux2~ t2t!,

We know that

tanh@x~ t !#5x~ t !tanh8~j1!,

tanh@x~ t2t!#5x~ t2t!tanh8~j2!,

wherej1 is the value between 0 andx(t), j2 is the value
between 0 andx(t2t), and 0<tanh8(s)<1 for any s. As
the parameter satisfiesA>0, we have

V̇uxt
<22x2~ t !12Ax2~ t !12uBuux~ t !uux~ t2t!u

1uBux2~ t !2uBux2~ t2t!

522~12A2uBu!x2~ t !2uBu@ ux~ t !u2ux~ t2t!u#2

<22~12A2uBu!x2~ t !.

Thus, we takev(r )522(12A2uBu)r 2, which is positive
definite. And the origin of the neural network with delay
globally asymptotically stable asA>0.

On the other hand, if the parameter satisfiesA,0, we
take
ib

05190
of
e

l
of

.

V~f!5f2~0!1E
2t

0

f2~u!du1AE
2t

0

@f~u!#2du

1AE
2t

2t

@f~u!#2du.

Therefore,

V̇uxt
<22x2~ t !12Ax2~ t !tanh8~j1!12uBuux~ t !uux~ t2t!u

1x2~ t !2x2~ t2t!1Ax2~ t !1Ax2~ t2t!

52Ax2~ t !tanh8~j1!1~A21!x2~ t !

12uBuux~ t !uux~ t2t!u] 1~A21!x2~ t2t!

For D54uBu224(A21)2,0, it leads to

V̇uxt
<2Ax2~ t !tanh8~j1!<0.

Thus, S5$fuV̇(f)50%5$fuf(0)5f(2t)50%, and it is
obvious that its largest invariant setM5$0%. By the second
criterion of Fact 1, we can prove that the origin of the neu
network with delay is globally asymptotically stable asA
,0. Above all, we complete the proof of Proposition 1.

APPENDIX B

The following facts will be useful to the proof of th
proposition in Sec. III.

Fact 4 @13#: Regarding the equationẋ(t)5ax(t)1bx(t
2t), if coefficientsa andb satisfya1b,0, and there exists
D5D(a,b).0, so that whentP@0,D(a,b)#, the zero solu-
tion is asymptotically stable. Here,

D~a,b!5H 1` ~ uau.ubu!

1

Ab22a2
cos21S a

Ab22a2D ~ uau,ubu!.

Fact 5 @13#: If the coefficientsa and b of equationẋ(t)
5ax(t)1bx(t2t) satisfya1b.0, then the zero solution is
unstable for anyt.0.

Fact 6@13#: Regarding equationẋ(t)5ax(t)2ax(t2t),
there existD5D(a).0, so that whentP(0,D), the zero
solution is stable. Specifically, whena<0, D51`.
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