PHYSICAL REVIEW E, VOLUME 63, 051906
Dynamics of some neural network models with delay
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The dynamics of the neuronic model described by the one-dimensional delay functional differential equation
are studied in this paper. We give a strict and detailed analysis of dynamical characteristic of this model by the
Lyapunov functional approach and Hopf bifurcation proposition. Furthermore, numerical simulations, as well
as Lyapunov exponents, are presented to support our conjectures about the appearance of complex dynamics
such as chaos. We also investigate the dynamics of the neural network model described-Hintaesional
delay functional differential equation with a symmetrical weight matrix, and corresponding simulation results
are included as concrete examples.
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I. INTRODUCTION dx(t)

TR —Xx(t)+Atanfx(t)]+Btanix(t—7)]. (2
Various research on the dynamics of neural network sys-

tems has been creating great interest for more than 30 yeai®@bviously, the neuron exerts instantaneous self-excitation

In the last ten years, many researchers have focused on thdgth the parameteA>0 and delayed self-inhibition with

study of the dynamics of neural network models with delay.B<<0. Therefore, the signs of the parametarandB deter-

In fact, neural networks often have time delay. An examplemine the self-characteristic of a neuron with threshold effect.

of neural network delay is the delay due to the finite switch-It is reported in Ref.[4] that with the parameters>0,

ing speed of amplifiers in electronic neural networks. Re.B<0 (that is, the neuron is self-excited and its delayed effect

search on these delay phenomena has been vast and the ifeself-inhibitory, the system has global asymptotic stability

sults are consistent. Marcus and Westerf#ltincorporated ~ independent of the delay whenA andB are in the triangle

a single time delay into the connection of terms of Hopfield’sdétermined by three line&=0, B=0, andA-B=1 in the

model and observed sustained oscillations resulting from thi§ — B parameter plane. _

time delay. Further investigation on dynamics of such mod- Since studying the dynamidsot only the stable but the

els can be found in Ref§2—8] and references therein: how- oscillating gharactenstlc as welbf Eq. (2) is essential f_or

ever, their primary concern is the equilibrium and stability of Understanding the behavior of larger neural networks in the

these neural network systems given specific parameterBrésence of delays, parameters in other regions were exam-

Meanwhile, other researchers, such as Pakdaeta. [9] N€d by Pakdaman and Malta998 and the corresponding

and Brunel and Hakini10], devoted their research to these "€Sults[4] are as follows. , o

oscillations, which are ubiquitous in neural networks. In this_ When A+B<1, the origin is the single equilibrium of

paper, we study both stable dynamics and oscillations, eveld: (2), while whenA+B>1, Eq.(2) has three equilibria,

chaos, in the given neural network model with delay. which arex;=a, x,=0, andx;=—a, wherea is the unique
In 1997, Pakdamaret al. [2,9] considered the following Strictly positive real number that satisfiesa=(A
one-dimensional system, +B)tanh@).
(1) If A+B<1 andA—B<1 (region I3, the origin is
dx(t) globally asymptotically stable for at=0.
ar —Xx(t)+Atanix(t—17)], 1) (2) If A+B<1 andA—B>1 (region Ib, the origin loses
its stability through a Hopf bifurcation at
and its solution is defined over the infinite-dimensional phase o= cosfl((l—A)/B)/\/m

spaceS=C[ — 7,0] of continuous functions on the interval

[—7,0]. They concluded that for certain parameters, thewith the delay being increased. For delays larger than

equation has a stable convergent solution or an oscillatingndamped oscillations appear.

periodic solution, but no chaotic dynamics. (3) If A+B>1,B>0 (lla), x;=a andxz= —a are locally
Furthermore, one of the mathematical models, originallyasymptotically stable, while, is unstable. For small delay

proposed by Caianiello and Luckkl] 30 years ago, consists 7, Eq.(2) is convergent in region lla as the boundary sepa-

of a set of neuronic and mnemonic equations. K. Gopalsamyating the two basins is exactly the stable manifold of the

and |. K. C. Leung(1997 [3] investigated the dynamical origin and as the delay is increased, the origin undergoes

characteristics of a firing neuron, adjusted using the differsuccessive Hopf bifurcation leading to the generation of pe-

ence of its current status and the weighted average of itdodic orbits.

firing history. After appropriate transformations, the neu- (4) If A+B>1, andB<O0 (llb), the instability is similar

ronic equation changes into the following delay differentialto that in region Ib. For large delays, most solutions display

equation: asymptotically periodic oscillations.
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In the following section, we give a thorough and compre- 4B
hensive investigation about a one-dimension delay differen-
tial equation and establish a good foundation for the numeri-
cal simulation; we strictly present proofs about the
theoretical results by a Lyapunov functional approach and Ia Ia
Hopf bifurcation proposition with our own technique. These \
mathematical proofs conversely suggest our conjecture about ry A
the appearance of the complex dynamics such as chaos. In L/ b
order to make our result more complete, numerical simula- e
tions and Lyapunov exponent calculations are given. In the e Ib
last section, we analyze the dynamics in a specified class of yd
higher-dimensional neural network systems. A-B=1 A+B=1

IIl. DYNAMICS OF THE NEURONIC MODEL DESCRIBED
IN' A ONE-DIMENSIONAL DELAY FUNCTIONAL
DIFFERENTIAL EQUATION

FIG. 1. A-B plane.

satisfies the following conditions, then for any 0, the zero

In this section, we give a theoretical analysis of the dy-solution is unstable. Herg;; (t)|<c;; .
namics of the neuronic model with the paramefeendB in (i) a+b>0; o
different regions la, Ib, Ila, and Ilb. The different parameter (i) there existse>0, so that =, j-,c;j|X'|[y'| <+
sets are relevant to self-excitation or self-inhibition of thewhen|x|<s,|y|<e.
feedback of a neuron and its threshold effect. In order to Observing the above theory, we may find that B).is a
present our results, we should first introduce some basiftinctional differential equation, and we can discuss the dy-
theory of a functional differential equation. Consider the au-namical characteristic of the origin of E() by applying

tonomous equation Fact 1. Consequently, we have the following proposition.
Proposition 1 If the parameters satisfy the inequality
dx(t) |B|<1—A (la), which means both the value of neuron and
T f(x0), the self-excitation dominate the threshold effect, the zero so-

lution of Eq.(2) is globally asymptotically stable, that is, the

wheref:C—R(C=C[ - ,0]) is completely continuous and Selution _Of Eq.(2) damps toward zero as—c.
solutions of this equation depend continuously upon the ini-  Proof: According to the assumption, we haset B<1.
tial data. We denote by(¢) the solution through (@). As This leads to the fact that the origin is a unique equilibrium.
we have finished defining the solution of the above equation] A=0, we take the Lyapunov functional
the asymptotic stability criterion and some useful facts can 0
be presented as follows. V(d)=2(0)+|B f 200)d6.
Fact 1[12]; (¢)=¢*(0)+|B| _T¢( )
(1) SupposeV:C—R is continuousV(0)=0, and there _
exist non-negative functiong(r) andw(r) such that when Let u(r)=r?, and we obtain

r—oe, u(r)—e, and u(|$(0))<V(¢), V(¢)< 0

—w(|#(0)]). Then the zero solution of equatiaix(t)/dt V( ¢):¢2(0)+|B|f HX(0)d6=$2(0)= (| $(0)]).
=f(x;) is stable and every solution is bounded.dfr) is -7

positive definite, then every solution tends toward zero as

t— oo, Furthermore, we could find a positive definite functiofr)

(2) SupposeV is continuous orG (the closure ofG), v Satisfies
<0 onG, andx,(¢) is a bounded solution of E@2), which )
remains inG. Thenx,(¢)—M ast—o. HereM denotes the VIxi<—w(|¢(0)]).

largest invariant set iS={¢| ¢ e G,V($)=0} with respect
to Eq.(2).

Fact 2[12]: If Eq. (2) satisfies the following conditions,
then Eq.(2) has a nonconstant period solutiomr/2 .

(& The linear equation has a simple purely imaginary
characteristic root\g=ivy#0 and all characteristic roots
Nj#\g,\g satisfy\;#m\, for any integem;

(b) ReN’(0)#0.

Fact 3[13]: If

Therefore, by Fact(@), lim,_, , . X(t)=0 ast— + . As the

prameterA<<0, we will use Fact (2) to prove thak(t) tends

to the largest invariant séfl ={0} ast— +. These imply
that the equilibrium of the neural network E@) is globally

asymptotically stable(The detailed proof will be given in
the Appendix)

Second, we will analyze the dynamics with a certain and
nonignored threshold effect, that is, the parameter region be-
comes Ib in Fig. 1. The following proposition involves Hopf
bifurcation in a neural network model based on fact 2.
X(t)=ax(t)+bx(t—r)+_ . Cij(t)xi(t)xj(t_T) 3) Proposition 2:When the parameters in regior_1 Ib satisfy

i€7=2 A+B<1, A-B>1 (which means the system is not only
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partially but also certainly determined by the effect of thetivations of the neuron are shown in Figs. 2 and 3 with the
self-inhibitory delay, there exists a critical value, of delay  parameteréA=—20.0,B=—50.0, 7,=0.0442, andA=1.0,
7, such that the zero solution loses its stability by Hopf bi-B= —100.0, 7.=0.0157, respectively. Furthermorg, de-
furcation atr. notes the largest Lyapunov exponent, which will be ex-
Proof: About Eq.(2), the corresponding linear equation is plained in the following paragraph. We take the initial con-
q dition asx(6)= ¢(6)=5.0—5.00/r,6[0,7].
X From the figures shown, we may find thatas 7., the
a_(A_l)X(tHBX(t_T) “ origin is asymptotically stable; while is close tor., the
orbit becomes periodic; wher> 7., the orbit presents cha-
and its characteristic equationis=A—1+Be otic characteristics after successive periodic changes. This
If 7=0, the characteristic equation becomes A+B  means that the value of a neuron’s threshold certainly deter-
—1. For the assumptioA+B<1, we know that the charac- mine the dynamics of it and the simulation results coincide
teristic root has a negative real partrat 0. Thus, the equi- with our theoretical analysis.
librium is asymptotically stable. There must exist a critical Next, we discuss the situation when the parameter in-
value 7. such that the characteristic root has a negative parquality A+ B>1 holds, that is, in regions lla and Ilb. In
asr is continuously increased from zerotp, and the char- these regions, both the feedback and the delay effect are
acteristic equation has a purely imaginary root whilemore dominate than the current status and @y has three
7=1.. To find this valuer;, we use the following method. equilibriax;=a, x,=0, X3= —a with the parameter inequal-
Letting A=iv(v#0), the characteristic equation turns ity. Applying Fact 3 above, we can easily conclude the fol-
into lowing proposition.(The proof of Proposition 3 is omitted
) » o here as it is trivia).
iv=A-1+Be """=(A-1+Bcosv7)~iBsinv, Proposition 3:If A+B>1, the zero solution of Eq2) is
unstable.
What's more, we want to investigate the characteristic of
A—1+Bcosy7=0 equilibria at zero as well. First, expand E@) at x;=a
according to the Taylor formula, and we have

—\T

and we have

v+BsinvT=0.

This leads to OI—X=—x(t)+A a_e*a+ [x(t)—a]+---
dt e+e @ (ed+e )2
v=\B2—(A—1)?, r.,=cos {1-A/B]/\B>*—(A—1)2.
e?—e @ 4
. . . e . . +B + X(t— —al+---¢.
Obviously, this satisfies conditiofa) in Fact 2. On the other {ea+ oa (ea+e*a)2[ (t—7)—a] ]

hand, derivation on both side of the characteristic equation

_ —NT__ — H
A—Be A+1=0, with respect tor, leads to Let z(t)=x(t) —a, and the variational equation of E(R)

)\,(T)+Be_>\7(7)\,(7)+)\):0, converts to

that is dz 4A 4B
' —=—zZO)+ —————z(t)+ ————z(t— 7).
dt (t) (ea+e—a)2 V) (ea+e—a)2 ( )
, . —ABeM
M= 1+Bre M’ Thus, the corresponding characteristic equation is
and A'(0)=—-BRe\(0)#0. Consequently, conditiortb) N — 14 4A N 4B Can
holds. B (ea+e—a)2 (ea_i_e—a)Ze ’

According to Fact 2, we know that the zero solution of
Eq. (2) produces Hopf bifurcation ai; to make the equation | ;=0 it leads to
have a periodic solution. We can roughly get some properties

of the oscillating period when it loses stability. Equati@ 4A 4B

will have a solutionx(t)=€'"" at (A,B,7;), wherev is the A=—1+ T s —.

angle frequency. Therefore, period (e+e %) (e+e™ )
T=2mlv=2m/\B?— (A—1)2=2mr./cos [1-A/B].  Let f(a)=e*—e"?*—4a and we havef’(a)=2e*

+2e 22—4=2(e®—e ?)2>0. For f(a)>f(0)=0(a>0)
Hence, it is easy to see that2 T<4r. Accordingly, the = andA+B>1, the inequality 48+ B)/(e®+ e ?)?<1 holds.
range of the oscillating period of E) is restricted at the Therefore A <0 as7=0. Because is continuously depen-
unstable point. dent onr, it follows that the characteristic root has a nega-
Figures 2 and 3 are illustrations of activations of the neudive real part for small-, which implies the local asymptotic
ron described by Eq(2) with the parameter® and B in  stability of equilibriumx;=a as A+B>1. Specifically, if
Region Ib. We take different parameters as follows. The acB<0, we want to find a critical value, as 7 is increased.
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FIG. 2. Dynamics of a scalar delayed neural network with paraméters-20.0,B= —50.0, 7.=0.0442, and the different threshold
values noted under each pictutte.represents the largest Lyapunov exponéaf.7=0.042,(b) 7=0.0442,(c) 7=0.058,(d) r=0.06,
L=0.2853.

Letting A=iv, the characteristic equation is therefore,

4A 4B rl=cos !

iv=—1+ + e lvr
(e?+e 3)? (ed+e ?)?

(e?+e 3)2—4A
4B v

Similarly to the proof of Proposition 2, the equilibriuxy
4A 4B o =a loses its stability by Hopf bifurcation at, .
=—-1+ (Pre )2 + (ea+e,a)2(0030 T—isinvT) By a minor modification of the above discussion, one can
easily determine the characteristic equilibriunxgf —a. In
short, forA+B>1, x,=0 is unstable an&;=a, X;=—a

4A 4B
=1t are locally asymptotically stable.
(e+e %) (e+e ) In the following paragraph, we are concerned with how
the unstable solution of E@2), that is, the current status of
X COSU T— | 4B sinv r a neuron, performs; will it evolve stochastically or regularly
(e?+e™?)? ' or tend toward infinity. By Eq(2), we know that
. . . . dx(t)
Comparing the imaginary part on both sides, we get TJFX(U =|Atani x(t)]+Btanfx(t—7)]|

\/16(32—A2)+8A(ea+ea)2 ) <|Al[tantix(t) ]|+ |B|[tanH x(t— 7) ]|

v= -1,

(e2+e ®)? <|A[+[B];
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FIG. 3. Regular and complex dynamics of a scalar delayed neural network with parafetgr@, B= —100.0,7,=0.0157, and the
different threshold values noted under the pictutesepresents the largest Lyapunov exponéat.r=0.01, (b) =0.015,(c) 7=0.0158,
(d) 7=0.022,(e) 7=0.026,(f) 7=0.028,L=0.1322.
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FIG. 4. Asymptotic dynamics and stable oscillations of a scalar delayed neural network system with the particular parameters

A=13.5373,B=—11.4627, andr,=2.009.(a) 7=1.0, (b) 7=2.009= 7, (c) 7=2.20,(d) 7=2.50.

thus,

dx(t)
—(|A|+|B|)$T+X(t)$|A|+|B|-

Then we get

t t
j—(|A|+|B|)e5ds<xe‘—xoet0<f (|A|+B|)esds.

to to
Therefore,
—(|A|+|B])<x=<|A|+|B| +xpe' (X,>0)
—(|A]+|B|) +xpelo=<x<|A|+|B| (x,<0).

This leads to the following proposition.
Proposition 4:Every solution of Eq(2) is bounded.

have chaotic dynamics, however, a one-dimensional delay
differential equation corresponds to an infinite dimension dy-
namical system, which means that it is very possible that
such a system’s dynamics will perform chaotically. There-
fore, the activation level of a neuron’s performance should
be complicated or even chaotic. Motivated by these ideas, we
simulate the numerical integral solution of Eg). We study
especially the dynamical behavior when delaychanges
near the critical value, and detect the solution trajectories
that exhibit prolific dynamics as is increased gradually.

Figures 4 and 5 are the numerical simulation of the pa-
rametersA, B in region llb. We takeA=13.5373,B=
—11.4627, andr,=2.009. The initial condition is taken as
X(6) = ¢(0)=5.0—-5.00°/ 7, #<[0,7].

Figure 4a) shows that the activations tend to the fixed
point —2. Figures 4b) and 5 depict the evolution from pe-

Our paper is based on the above results. What we considiod to chaos, and the larger the delayof a neuron be-

ered is that due to the solutions of E@) all being bounded,

comes, the more obviously the chaotic phenomenon extends.

the dynamics of the solutions will be very complex as theWe zoom out to the activations in the time period 2000—
equilibrium points are unstable. In an ordinary differential 5000 (ms) and 3000—4000ms) from those in Fig. B),
equation, a system whose dimension is larger than three willvhich can be seen in Figs(& and 5d).
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FIG. 5. Chaotic dynamics of scalar delayed neural network systems with larger threshalid parametersA=13.5373,
B=—11.4627,7,=2.009, whereL is the largest Lyapunov exponetid) 7= 3.0, L=1.2531,(b) 7=3.90,L=1.4618.(c) and(d) are the
zoomed out pictures frortb) in the time period 2000—5000@ns) and 3000—400@ms), respectively.

Chaotic dynamics are unpredictable because the evolu- In Ref. [4], the chaos of such a neuron in the neuronic
tional time is of long enough duration to make it impossiblesystem, described by EQ), is never mentioned; however,
to depict the orbital evolution by using the analytic solutionwe observe the chaotic orbit with the aid of a computer. Our
of Eq. (2). However, we are trying to give an effective the- results further strengthen the evidence demonstrating the
oretical criterion to ensure the existence of chaos; neverthgyresence of chaos.
less, it is still in process. Numerical simulation is then often
used as an auxiliary tool, designed for this, and the research
on chaos is usually called “the science of the computer era.” lll. DYNAMICS OF THE NEURAL NETWORKS MODEL
We also use the largest Lyapunov exporiédi]. This expo- DESCRIBED IN A n-DIMENSIONAL DELAY
nent is widely used in nonlinear science as a measurement FUNCTIONAL DIFFERENTIAL EQUATION WITH
index. It can be foundl15] that a positive largest Lyapunov SYMMETRICAL WEIGHT MATRIX
exponent indicate; the appearance.of ch.aos in a bounded In Ref.[1], Marcus and Westervelt considered the follow-
system._The following computation simulation results afflrming equations with delay:
our conjecture.

As A=-20.0, B=-50.0, and 7=0.06, the largest n
Lyapunov exponent is 0.2853; the largest Lyapunov expo- | «v_ _ ., T 1o .
nent becomes 0.1322 with the parametefs=1.0, ui(t) u'(t)+j21 Jf(ut=n) (1=12:--.n).
B=-100.0 and 7=0.028, while with A=13.5373, (5)
B=—11.4627, and-= 2.8, the largest Lyapunov exponent is
equal to 1.1794. It is evident that the activations, limited in aThe model is originally from the Hopfield system, and where
bounded region, and split exponentially, show roughly thel;; represents the connected weight betweeni theneuron
emergence of chaos. and thejth neuron, and the second term on the right-hand
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side of Eq.(5) represents the feedback from all neurons to Note: Whenre (0,7;), the zero solution of Eq(9) is

the ith neuron itself. However, Marcus and Westervelt addasymptotically stable. When= 7., because several compo-

time delay to the connection of terms of this system such thatents satisfying\;<R; produce Hoof bifurcation, the whole

it becomes more realistic for the real neural networks. Equasystem tends to a periodic solution while the other compo-

tion (5)’s linear equations are nents tend to zero; when> 7., the components satisfying
A\j<R; have complex chaotic dynamics after successive

n
- Hoof bifurcation, thus the totah-dimension system is cha-
u; (1) = —ui(t)+j§=:1 Bijui(t=1), ©®  otic as long as there is one chaotic component. In short, the
threshold value is the key to the different dynamics when the
where g is the derivative off(u) at 0. delayed self-inhibition is considerably large, that s,
Supposelj; is symmetrical, and that it can be transformed <R; .
into a diagonal matrix. Therefore, the aboralimensional Proposition 6. If there exists at least one\; (i
equations will turn into the followingn one-dimensional e{1,2,...n}) satisfying\;>—R;, then the zero solution
equations: of Eq. (9) is unstable for any>0.
} Remark.By this proposition, once there is one chaotic
Xi(t) ==X (t)+ BNXi(t—7), (7)  component of a neural network system, tirimensional
) ) ) system should be chaotic. As a result, it can be seen that as
wherex;(i=1,2,...n) is the eigenvalue od;; . long as there is at least ong> —R;, then for anyr>0, it
We considered the following equation, similar to E8): i be possible to make the-dimensional system chaotic
n owing to the chaotic dynamics of certain components. Com-
WD =Ru )+ >, Wyflu(t-n1, (=12,...n), paratively, requiring al[\;| <|R;| to make the zero solution
=1 asymptotically stable is obviously strictly limited; however,

(8 complex behavior such as chaos is relatively easy to demon-

. strate.
where R;<0 represents the resistance of each neuron, and

W;; represents the connected weight betweeni theneuron
and thejth neuron. However, Ed5) is a special form from

Eq. (8). Equation(8)’s linear equations turn out to be Now, by applying the above theory, we take a special case
that is a two-dimensional system as

Numerical simulation results

n

(Ji(t)=Riui(t)+j§_:1f’(O)Wi]-uj(t—T), (i=1,2,...n). R;=-21, R,=1, W;;=—-50, W,=—100,
© W1,=Wy;=0, [Figs. §a)—6(b)]

| : :

n the following paragraph, we show some results in an Ry=—21, Ry=—3, Wy=-50, Wy=—4,

n-dimensional system, which is analogous to that of the sca-

lar neuron system. For convenience of discussion, we take Wy,=W,,=0, [Fig. 6¢)].

f(u) =tanh{y), which is a popular function in a neural net-
work system, ang3=1. By the direct use of some facts in Thus, we have the following numerical simulation results.

Appendix B, we have the following result§We omit the Figure 8a) shows the phase space of componentand

proof here to avoid repetition. u, with the time delay7=0.01 [ 7.=min(0.0452,0.0157)
Proposition 5. =0.0157. They show the convergence of two components
(1) If all eigenvalues\; of weight matrix W satisfy |\;] to zero, which means that the status of the two neurons is

<|Rj] (i=1,2,...n) (which means the delay effect is not asymptotically stable.

dominate in the evolution of a neural network systethen Figure 6b) shows the evolutions of componenig and

the zero solution of Eq9) is asymptotically stable, indepen- u,, respectively, as the time delay= 0.06. We can see that

dent of the time delay-. the orbits perform chaotically. And the corresponding orbits
(2) The equation corresponding 9 satisfying\;= — R, in phase space are also shown in the third picture of Fig.

has the property that its zero solution is stable for any times(b). We also get a limit cycle, shown in Fig(d, of the

delay 7. neural networks’ activations as the parameters are taken as
(3) If all eigenvalues\i<—R; (i=1,2,...n), andthere the above explanation; therefore, the status of the two neu-

exists at least on&; (je{1,2,...n}) satisfying\;<R;, rons tends toward regular oscillation with time.

and then there existsa>0 such that as e (0,7;), the zero

solution of Eq.(9) is asymptotically stable; as> 7., the IV. CONCLUSION

stability is lost. Here, All of the obtained criteria and propositions are strictly

proved by the Lyapunov functional approach and Hopf Bi-
furcation. These results are reinforced by the computer simu-
lations. The conjecture of the existence of the chaos in neural
network system is analyzed in detail above. These factors
(\j<Rj,je{l,2,...n}). might play an important role in the design of neural net-
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FIG. 6. Dynamics of two-dimensional neural networks WRh= —21, R,=1, W;;=—50, W,,= —100, W;,=W,;=0, [(a), (b)] and
Ri=—21,R,=—3, Wy,= —50, Wy,= — 4, Wy,=W,,=0. (d) 7=0.01,(b) 7=0.06,(c) 7=4.0.
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works. However, the theoretical proofs about the existence of
chaos in neural network models with delay, considering the

stochasticity of real neural networks, will be given in future
studies.
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APPENDIX A

The details of proof Proposition 1 are given as follows.
We take

0
vig)=g%0+18l | g0do.

Hence,
VI = 2x()X(1) +[B|x? | B|x*(t - 7)
= —2x2(t)+ 2Ax(t)tanH x(t) ]+ 2Bx(t)tanH x(t— 7)]
+[B[x*(t) = [BIx*(t—17),
We know that
tani x(t)]=x(t)tanh (&,),
tanH x(t— 7)]=x(t— 7)tanh (&),

where ¢, is the value between 0 andt), &, is the value
between 0 an(t—7), and O<tanh (s)<1 for anys. As
the parameter satisfigs=0, we have

V] == 2(t)+2A%2(t) + 2| B|[x(1) [ x(t— 7)|
+[B|x*(t) —[B[x*(t—7)
—2(1=A-[B)x*(t) = |BI[[x(t)] = [x(t— n)[]?
<—2(1-A—|B|)x(1).

Thus, we takew(r)=—2(1—A—|B|)r2, which is positive
definite. And the origin of the neural network with delay is
globally asymptotically stable a&=0.

On the other hand, if the parameter satistfes0, we
take

V[, = —2x%(t) + 2Ax3(t)tanh (£1) + 2[BJ[x(t)|[x(t— 7)|
+x2(t) — X2(t— 7) + AX3(t) + AX3(t—7)
=2Ax?(t)tanH (&) + (A—1)x3(t)
+2[BI|x(D)[x(t=7)[] + (A= 1)x*(t—17)

For A=4|B|?2—4(A—1)?<0, it leads to

\'/|th 2AX3(t)tanH (£,)<0.

Thus, S={|V(4)=0}={¢|¢(0)=¢(—7)=0}, and it is
obvious that its largest invariant skt={0}. By the second
criterion of Fact 1, we can prove that the origin of the neural
network with delay is globally asymptotically stable As
<0. Above all, we complete the proof of Proposition 1.

APPENDIX B

The following facts will be useful to the proof of the
proposition in Sec. Ill.

Fact 4[13]: Regarding the equatior(t)=ax(t)+ bx(t
— 1), if coefficientsa andb satisfya+b<0, and there exists
A=A(a,b)>0, so that whenre[0,A(a,b)], the zero solu-
tion is asymptotically stable. Here,

+ oo
1
2

b’-a

(lal>1b])

a
cos | ——
( \/bz—az)

Fact 5[13]: If the coefficientsa and b of equationx(t)
=ax(t) +bx(t— 7) satisfya+b>0, then the zero solution is
unstable for any->0.

Fact 6[13]: Regarding equatior(t) =ax(t) —ax(t—7),
there existA=A(a)>0, so that whenre(0,A), the zero
solution is stable. Specifically, when<0, A = + 0.

A(a.b)= (Jal<]b]).
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